SUKUNA SECONDARY SCHOOL

Sundarharaincha-10, Morang

(Second terminal examination - 2079)

riass: 11 (Science)	F.1VI 30
Subject: Chemistry	Time: 2 hour
Candidates are required to g	ive their answers in their own words as far a
practicable. The figures in the	e margin indicate full marks.
	GROUP: A
Rewrite the correct options of	of each questions in your answer sheet.
	$(1\times 9=9)$
	f element 19K ³⁹ doesn't indicate?
a) atomic no.	b) atomic mass
c) neutron no.	d) proton no.
2. The percentage of oxygen	
a) 52.17	b) 13.14
c) 30.78	d) 34.78
3. 2 g of O ₂ at NTP has vol	
a) 1.4 litre	b) 2.8 litre
c) 8 litre	d) 11.2 litre
	form exited energy level jumps to;
a) 1 st orbit	b) 2 nd orbit
c) 3 rd orbit	d) 4 th orbit
5. Nitrogen atom should have	ve three unpaired electrons according to:
a) Hund's rule	b) Heisenberg's uncertainty principle
c) Aufbau principle	
6. The amount of substance	deposited W= ZIt. Which law is represented
by this?	
a) Avogadro's law	b) Faraday's law
c) Dalton law	d) Boyle's law
7. According to oxidation	no. concept, decrease in oxidation no. i
called?	
a) oxidation	b) redox reaction
c) reduction	d) oxidant

8. Cyclohexane is an:

a) Aliphatic compound

b) Alicyclic compound

c) Aromatic compound

d) Heterocyclic compound

9. The homologues have nearly the similar chemical properties because of;

b) catenation

a) equal carbons no.

d) All

c) same functional group

GROUP: B

Short answers questions

 $(5 \times 5 = 25)$

10. Mole represents number, mass and volume of any particles

i) How does mole represent number and volume?

ii) A person drink 2kg of water daily. How many molecules of water he drinks in a week?

iii) How many numbers of moles of CO will be left when $2x10^{21}$ molecules are removed from 0.28g of CO? [1+2+2]

11. The chemist is more interesting in the calculation of percentage yield in the industry.

i) Define theoretical yield and experimental yield.

ii) Define percentage yield.

iii) 6.5g of zinc reacts with 7.3 gram of HCl. If experimental yield of hydrogen gas is 0.175g, calculate the theoretical yield and percentage yield.

[1+1+3]

OR

11. Define oxidant and reductant. Balance the given chemical equation by oxidation no. or ion-electron method and also specify oxidant and reductant.

$$I_2 + NO_3 + H^+ \rightarrow IO_3 + NO_2 + H_2O$$
 [1+3+1]

- 12. An atom has 2 electrons in the first orbit, 8 electrons in second orbit and 2 electrons in third orbit.
 - i) Give the electronic configuration of the atom and atomic number of the element.

- ii) Write number of principle quantum number and number of sub shells.
- iii) Write number of s-orbitals and number of p-orbitals electrons.
- iv) What are the quantum numbers for valence electrons of this element?
- v) Write the name of noble gases just before and just after this element.

[1+1+1+1+1]

- 13. Halogens are highly reactive elements. They have high electronegativity values and they are good oxidizing agents.
 - i) What happens when chlorine is treated with excess of ammonia?
 - ii) How does bromine react with hot and conc. NaOH?
 - iii) Give the correct order of acidic strength of HCl, HBr and HI.
 - iv) Why can't HBr and HI be prepared by the action of conc. H₂SO₄ on bromide and iodide respectively? Suggest alternative methods for preparation of HBr and HI. [1+1+1]

OR

- 13. What are foreign elements? Write examples. Give outline and chemical reaction for the detection of nitrogen in the organic compound. Also write the structural formula for;
 - (a) 3-hydroxybutanoic acid
 - (b) 2-amino-3,4-dimethylpent-2-enal [1+2+2]
- 14. Write the basic postulates of kinetic theory of gas. [5]

Group-C

Long answer questions

(2x8=16)

- 15. What is limiting reactant? 20g of 40% pure CaCO₃ if reacted with 5g of HCl to give CaCl₂, H₂O and CO₂.
 - i) Which one is limiting reactant and why?
 - ii) Calculate the number of moles of excess reagent left over.
 - iii) Calculate the mass of CaCl₂ formed.

- iv) How many numbers of water molecules are produced?
- v) Calculate the volume of CO₂ produced at 27°C and 0.5 atm pressure. [1+2+.1+1+1+2]

16.

- (i) Write short note on hydrogen spectrum.
- (ii) Define ECE and 1 Faraday. A metallic spoon is coated with silver by passing a current of 5A through AgNO₃ solution for 5 hrs. What is the thickness of silver plating if the area of the spoon is 12 cm² (density of silver is 10.5 g/cc and atomic mass of silver is 108g) [2+2]

OR
Study the given homologous series and answer the following question.

K	
CH ₃ -CH ₂ -OH	
S	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	

- (i) Define homologous series and functional group.
- (ii) Identify R and S with their mass difference. Write their IUPAC names.
- (iii) Write any two characteristics of homologous series.
- (iv) Write the functional group and first three members of aldehyde. [2+2+2+2]

BIEST OF LUICK

Sukuna Secondary School

Sundarharaincha-10, Morang

Second Terminal Examination 2079

Class: XI F.M. = 50Sub: Mathematics Time: 2hrs $1 \times 4 = 4$ Group "A" 2. Two matrices A and B are inverse to each other then, a. AB=Ib. BA=I c. AB=BA d. AB=BA=I 3. The imaginary part of the complex number $\frac{3+i}{i}$ is, a. 3 b. -3i c. -3 d. =14. If $\sin^{-1} x = \cos^{-1} x$ then x = ?a. $\pm \frac{1}{\sqrt{2}}$ b. 0 c. 1 d. -1 5. Write any two properties of determinants and prove that, $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$ (2+3) • 6. if \propto and β be the roots of: $Px^2+qx+q=0$, then Prove that: $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{n}} = 0$ 7. Define complex number. If z and w are two complex numbers. Prove that $|z + w|^{2} + |z|^{2} + |w|^{2} + 2\text{Re}(z\overline{w})$ Define inverse circular function with examples. (2+3)Prove that; $3\tan^{-1} x = \sin^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$ 9. Write any three form of indeterminate forms (2.5+2.5)Prove that: $x \xrightarrow{llm} 0 \xrightarrow{cosecx-cotx} = \frac{1}{2}$

10.		ow that the following victors are coplanar $+6\vec{b}+7\vec{c}$, $7\vec{a}-8\vec{b}+9\vec{c}$ and $3\vec{a}+20\vec{b}+5\vec{c}$	5
		Group "C"	
11.	a.	Find the distance between the parallel lines: $y=2x+4$ and $6x-3y=5$	2
	b.	Determine the equations of the bisector of the angle between the lines $3x-2y+1=0$ and $18x+y-5=0$. (4) Identify the bisector of the acute angle.	n +2)
12.	a.	Find the derivative of: $\frac{ax+b}{\sqrt{x}}$ by first principle	4
		Find the derivative of: (i) $y = \frac{1+sinx}{1-sinx}$ (ii) $x^{sinx} = y^{siny}$	2
		"The End"	

SUKUNA SECONDARY SCHOOL

Sundarharaicha-10, Morang

Second Terminal, Examination-2079

	Physics (1011) : XI (Science)			Tin	1.: 50 ne: 2 Hours
	Objective Qu	GRC	UP -A		(1 = 9]
1.	the best alterna	ative to the for	ollowing quantitie	uestions.	ntical dimension
(a	a) A+B	(b) A-B(c)	$\frac{A}{B}$	(d) None	
	Which of the following $\frac{u^2 \sin \theta}{g}$	lowing representation $\frac{u^2 \sin 2\theta}{g}$	ent maxim $(c) \frac{u^2}{g}$	um horizont (d)	$\frac{\text{tal range}}{u^2 \sin^2 \theta}$
(a	the maximum value) limiting c)frictional force	friction		called etic friction (d) none of	above
	ie power will be	and 🏂	and it mo		onstant velocity vertical $\frac{F}{v^2}$
(a	When water is he increases to does not chan		(b) decr		increases
by	20 J of energy in the second of the second s				se its temperature 32°C
(a (b . (c	ree objects A, B net heat net flows net heat does net heat flows net heat flows	flows from A from Control of the flow from the flow from	to B but rebut from any one contains	ot from A to om A to of them to an	C

8.	The	e radius of callength?	urvature	of co	ncave i	mirror is 1	5 cm.	What will be its
	(a	15 cm		(b) 7.	5 cm	(c) 30	cm	(d) None
9.	If e	earth is cons	idered as	s spher	rical cap	pacitor and	its ra	dius is 6.4x10 ⁶ m
	(a)		(b) 611		(c) :	$511\mu F$ UP - B	(d) 4	$11 \mu F$
		Ans	wer the	follow		estions. [5 x 5	= 25]
10.								
		[1]						t the same time?
	b)	State and p [3]	rove the	princi	ple of c	onservatio	n of li	near momentum.
	c)	A ball of m	ass 0.1 K	g mov	ing wit	h a velocity	6 m/s	collides directly
		with a ball	of mass	0.2 Kg	at rest.	Find thier	total l	inear momentum
		before coll	ision.	[1]		A*A		
					OR			• . •
		[2]						with examples.
	b)	In the figur	e, it is s	hown t	that the	one dimen	sional	elastic collision
		between tw	vo objec	cts of				m2
		between two mass 1 Kg with initial	g and 0. I velocit	8 Kg ties 4	$\binom{m_1}{}$	11 1		To 100 100 100 100 100 100 100 100 100 10
		m/s and		m/s		•		
		respectively			1 .	•	. ~	
		direction of						
	(i)				-	y in this co		
	(ii)			me i	OSS III	Killetic e	nergy	if collision is
	<i>(</i>)	inelasti	- -,	orce l	Drove ti	hat the con	tringt	1 0000100010001
		al to $\omega^2 r$. [JICC . I		iat the cen	urpea	al acceleration is
				Kois	whirled	l in a vertic	cal cir	cle at an angular
								he tension on the
								(ii) at the lowest
		nt of the mo		(-) 40		[2]		() at the lowest
				ol of w	ater alv		ar to b	e shallower than
		ctually is? [2						The state of the s
	it a	L-		Plea	se Turn	Over O		

- (b) A transparent cube of 12 m edge contains a small air bubble. Its apparent depth when viewed through one face of the cube is 6 cm and viewed through the opposite face is 2 cm. What is the actual distance of the bubble from the first face? [3]
- 13. (a) Why do solids expand when their temperature is raised? [1]
 - (b) Expain, how density of substance varies with temperature?[2]
 - (c) In an experiment performed by Dulong and Petit's method, the height of the cold and hot column of mercury are found to be 99.5 cm and 101.2 cm respectively. Of the cold column is at 0°C, calculate the temperature of hot column. [cubical expansivity of mercury = 1.8×10^{-4} K⁻¹]

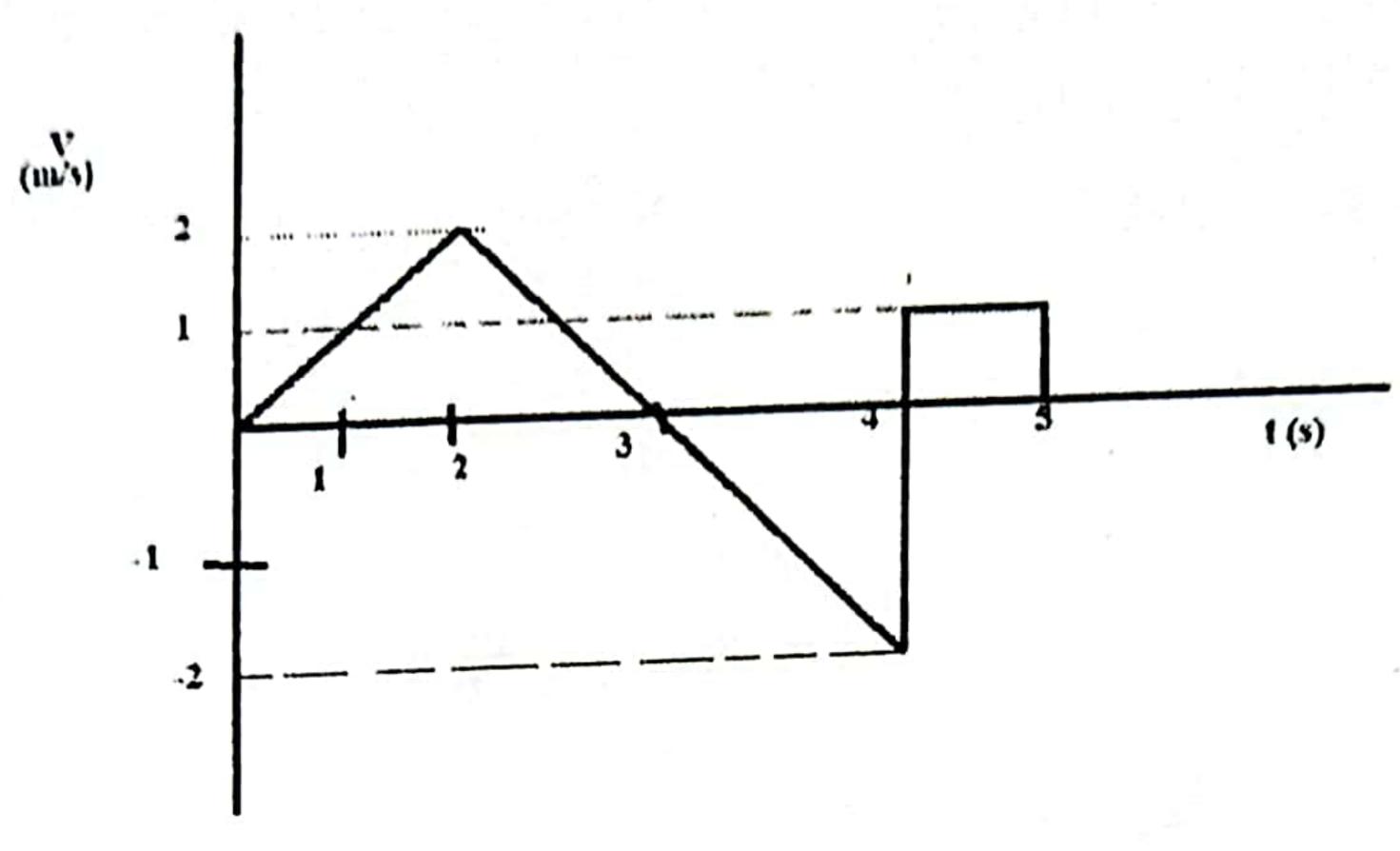
OR

- (a) State the principle of calorimetry. [1]
- (b) A person gets a more severe burn by steam at 100°C than by boiling water at 100°C. Why? [2]
- (c) Latent heat of ice is 80 cal/g. A man melts 60 g of ice by chewing in one minute. Find the power of man. [2]
- 14. (a) Define capacitance of a capacitor. Find the resultant capacitance of three parallel plate capacitors when they are connected in parallel combination. [3]
 - (b) Prove that electric lines of force are pependiulcar to the equipotential surface. [2]

OR

- (a) Write down the dimensional formula of electric field intensity. [1]
- (b) Find out the electric field intensity at a point ouside the spherical charged hollow conductor using Gauss law in electrostatics. [2]
- (c) An electron charge 1.6 x 10⁻¹⁹C is situated in a uniform electric field of intensity 12,000 V/m. Find the force on it and its acceleration. [2]

GROUP - C


Give long answer to the following question. $[8\times2=16]$

15. (a) Velocities of two bodies A and B are given in vector notation as $\overrightarrow{V_A} = \overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$ and $\overrightarrow{V_B} = 3\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$ respectively. What will be the relative velocity of B with respect to A in this notation?

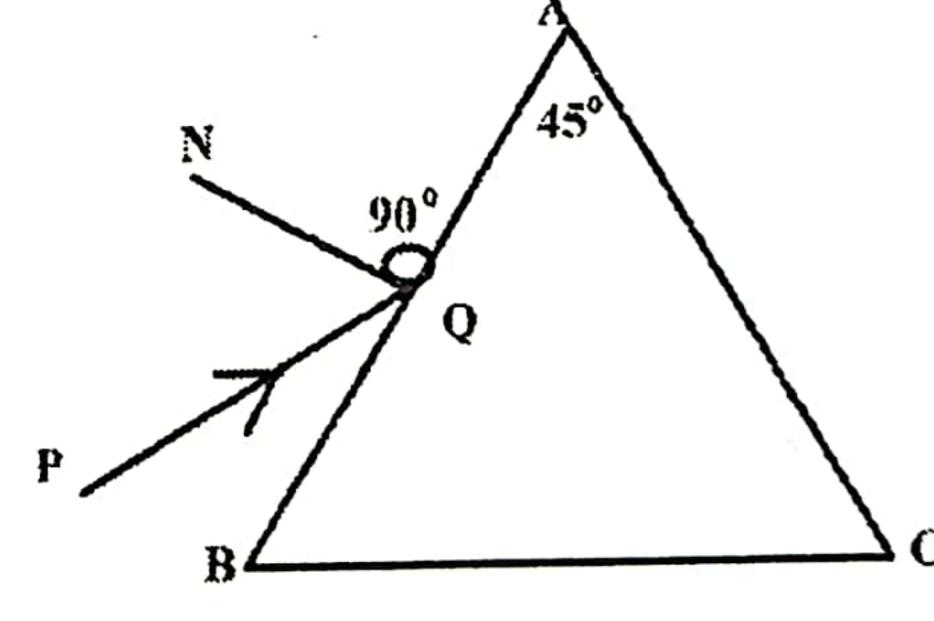
[2]

(b) Prove that the path of projectile is parabolic when the body is thrown horizontally with velocity u from a top of a tower from height h. Also find its time period. [3]

(c) The velocity time-graph of a body is shown in figure. Find (i) displacement from graph in 5 sec.

(iii) Distance from graph in 5 sec.

16. (a) Define power of a lens. Write its unit. [1]


(b) Derive the lens formula for convex lens when real image is formed.

(c) In the given diagram, a ray PQ is incident on a prism ABC. Complete the ray diagram and find the angle of minimum deviation if

the light incident by angle 30°.

(refractive index of prism = 1.66)

(d) Write the condition in which the angle of deviation becomes minimum. [1]

OR

- (a) Sketch an electric lines of force pattern around two unlike point charges shown below.[2]
- (b) Define electric potential at a point.[1]

(c) Find the expression for electric potential at a point due to point charge. [3]

(d) What distance must an electron move in an uniform potential gradient of 200 V/cm in order to gain kinetic energy 3.2×10^{-18} J? (e = 1.6 x 10⁻¹⁹C)[2]

सुक्ना माध्यमिक विद्यालय

सुन्दरहरैंचा १०, मोरङ द्वितीय त्रैमासिक परीक्षा २०७९

विद्यार्थीले सकेसम्म आफ्नै शब्दमा उत्तर दिनु पर्नेछ । दाँया किनारामा दिइएको अंकले पूर्णाङ्क जनाउँछ ।

कक्षा : ११

मय: २ घ.

विषयकोण: ००११

विषय : अनिवार्य नेपाली

पूर्णाङ्क : ४० उत्तीर्णाङ्क : १५

१. दिइएको अनुच्छेदका रेखाङ्कित वर्णहरुको उच्चारण स्थान र प्राणत्व छुद्याई लेख्नुहोस्

प्रस्तुत पाठ्यक्रमको उद्देश्य विद्यार्थीमा भाषिक सक्षमता अभिवृद्धि गराउनु हो । २. शुद्ध गरी पुनर्लेखन गर्नुहोस्

मिरिमरे उज्यालो भयेको थीयो । गुमाने लाई खोजदै आशामरु आइपुग्यो । एकाबीहानै आशामरुलाई देखेर गुमानेले भन्यो कति काम्लाई केकालो लाग्यौ साहू ?

३. अनुच्छेदमा रेखाङ्कन गरिएका शब्दको पदवर्ग पहिचान गरी लेख्नुहोस् हरि आफ्नो कोठाको टेबुलमाथि किलाब राखेर फटाफट माथि गयो अनि चुवाआमासँग परामर्श लिई आफ्नो काममा नै व्यस्त हुन थाल्यो। व्यस्तता नै उसको परिचय हो!

४. दिइएको अनुच्छेदबाट दुइओटा तत्सम र दुइओटा आगन्तुक शब्द पहिचान गरी लेख्नुहोस्।

दिनभरको परिश्रमले मानिसहरुको शरीर र दिमाग समेत थाक्दछ तसर्घ नयाँ स्फूर्ति तथा कामका लागि कम्प्युटर जस्तै हरहमेसा तयारी गर्नुपर्छ। टाईसु लगाएर बस्ने भन्दा दिनरात मजद्री गर्ने मानिसहरु महान् हुन्छन्।

५. दिइएको अनुच्छेदबाट एउटा अनुकरणात्मक शब्द, एउटा उखान र एउटा टुक्जिको पहिचान गरी तिनलाई वाक्यमा प्रयोग गर्नुहोस्

नजिकको तिर्थ हेला भनेभौँ नयाँ स्कुटरको पुजा गर्न घर नजिकैको मन्दिरमा नगएको म द्वै हातमा लड्डु लिएर पशुपितनाथ पुजा गर्न गए। पुरोहितले मेरो स्कुटरलाई अविरले ढपक्क ढाकेर मुसुक्क हास्दै पूजा गरेको देखेर हस्याङ् फस्याङ् गर्दै दक्षिणा दिए ।

६. तलका अनुच्छेदबाट दुईबोटा उपसर्ग र दुईओटा प्रत्यय व्युत्पन्न शब्द पहिचान गरी तिनको निर्माण प्रिक्तया देखाउनुहोस्

प्रमुख राजनीतिक दलहरुले गैरिजिम्मेवार बनेर मृलुकलाई अनिर्णयको बन्दी बनाउनुहुदैन । दलीय कर्तव्य र राष्ट्रिय जिम्मेवारीलाई बुभेर सकेसम्म चाडै काममा केन्द्रित हुनु आवश्यक छ ।

७. दिइएको अनुच्छेदलाई एकवचन भए बहुवचन र बहुवचन भए एकवचनमा परिवर्तन गरी पुनर्लेखन गर्नुहोस्

मेरा साथीहरु कलेज पढ्न सहर गए। मचाहिँ गाउँका मायाले यही पढ्न थाले। उनीहरु सहरमा छुँवाधुलो खाएर बसेका छन्। म गाउँको स्वच्छ हावापानीमा रमाइ रहेको छु।

द्र. दिइएको अनुच्छेद पढी सोधिएका प्रश्नको छोटो उत्तर लेब्नुहोस् जीव विकासमा विभिन्न तिरकाले सुधारहरु हुँदै आए, सर्वप्रथम हड्डी नभएका जनावरहरु थिए तर तिनीहरु लामो समयसम्म बाँच्न सक्दैनथे तसर्थ हड्डीको विकास भयो । एक पटकमा हजारौको संख्यामा माछाले फूल पार्छ । फूलको सुरक्षा नगर्ने भएकोले तिनीहरुको धेरैजसो फूलहरु अन्य प्राणीले खाइदिन्छन् वा नष्ट हुन्छ । केहि विकसित जनावरको परीक्षण गरेको खण्डमा तिनीहरुले थोरै बच्चा पैदा गरेर पिन राम्रो हेरचाह गरेको पाउछौ। स्तनधारी जनावरहरुले फुल पार्देनन् तर तिनीहरुले फूल आफ्नो शरीरिभिन्नै राखेर एउटा विकसित बच्चालाई जन्म दिन्छन् । कुकुर, विरालो, खरायो आदि स्तनधारीका उदाहरण हुन् । यिनीहरुले बच्चा जन्माएपछि आफ्नो दुध चुसाउँछन् । कुखुराको पोथीले पिन फुल पार्छ । पोथीले फुललाई आफ्नो शरीरले छोत्छ अनि चल्लाको जन्म हुन्छ । चल्ला जिन्मएपछि केही समयसम्म खानेकुरा खुवाउँछ ।

क) हर्ड्डिको विकास कसरी भयो ?

प्रश्नहरु

- ख) माछाका फुलहरु कसरी नष्ट हुन्छन् ?
- ग) क्खराको पोथीले कसरी चल्ला जन्माउँछ ?
- घ) 'स्तनधारी' र 'परीक्षण शब्दको अर्थ लेख्नुहोस्।

९. अनुच्छेदबाट चारओटा बुँदा टिपी एक तृतीयाशं सारांश लेखनुहोस्। २+२=४ हम्मो समाजमा अनेक विकृतिहरु मध्ये एउटा गम्भिर विकृति लागु पदार्थ दुव्यर्सन हो। दिन प्रतिदिन समाजमा बढ्दै गएको यस विकृतिबाट थुप्रै युवायुवतीहरुले आफ्नो अमूल्य जीवन वर्बाद पारी रहेकाछन्। भविष्यका कर्णधारहरु कुलतमा फसेपछि राज्यले सक्षम जनशक्ति गुमाइरहेको छ। धेरैको परिवार नष्ट भएको छ। हाम्रै आँखा वरिपरि दुव्यर्सनमा फ्का मानिसहरु जीवन र मृत्युको दोसाँधमा पुगेको देख्न सिकन्छ। कोही मृत्युसँग लिडरहेका हुन्छन् त कसैले जीवन नै गुमाइसकेका हुन्छन्। आजभोली मन्दिर, पार्क, बगैँचा आदि जस्ता सार्वजनिक स्थलमा नसामा भुमिरहेका युवा युवतीहरु देख्न सिकन्छ।

अभिभावकहरुले सन्तानलाई पर्याप्त समय दिन नसक्नु र कुलतमा फसेका थाहा पाएपछि पिन सामाजिक प्रतिष्ठा गुम्ने डरले गर्दा दुव्यर्सनमा फर्स्नेहरुको संख्या बिहरहेको छ ।

90. कुनै स्थातिप्राप्त व्यक्तिको असामियक निघन भएको घटनामा विधालयका तर्फबाट तयार पारिएको समवेदना पत्र तयार पार्नुहोस् ।

91. दिइएको गद्यांश पिंठ सोधिएका प्रश्नहरुको उत्तर लेक्नुहोस् र+२=४ बल्ल सानीका आँखा उहो । त्यसलाई आफ्नो अङ्गप्रत्यङ्ग कसो खुम्चिन लागेको छाला देखेर बितेको दीर्घ समयको सम्भना भयो र भन् प्रत्यक्षमा त्यसल देखि, यात्राको तीन चौथाइ पूरा भएपछि त्यसको थाहा पाइछ । आशा समाप्तिको साथसाथै जीवन सन्ध्या पिन आइपुगेको रहेछ । दुनियाँ अर्के भएको रहेछ, यस वर्तमानसँग त्यस सानीमा कुनै प्रकारको सामञ्जस्य रहेनछ । आशाले अभसम्म बुद्धिलाई धोखा दिइरहेको थियो, सानी शिथिल, क्लान्त भेँ हुन गई । भिइरहनमा शरीर साहै नै गलेको जस्तो भान हुन लाग्यो र त्यसै द्वारमा थचक्क बसी ।

क) सानीको प्रतीक्षा कसरी समाप्त भयो ?

प्रश्नहरु

प्रश्नहरु

- ख) यस अनुच्छेदमा सानीको कस्तो मनोविज्ञान प्रस्तुत भएको छ ?

 9२. दिइएको निवन्धांश पिंढ सोधिएका प्रश्नहरूको उत्तर लेख्नुहोस् । २+२=४

 संस्कृति हाम्रो पिरचय हो, हाम्रो पहिचान हो र हाम्रो अनुभूति हो । संस्कृति हाम्रो बोल्ने,
 विचार गर्ने र बाँच्ने तिरका पिन हो । हाम्रो संस्कृति बाँच्नुपर्छ, त्यसैले हाम्रा सांस्कृतिक
 मूल्यहरु बाँच्नुपर्छ । दसैँ हाम्रो संस्कृति हो । तिहार हाम्रो संस्कृति हो । तिज, बुद्ध पूर्णिमा,
 उद्यौली, उभौली, ल्होसार, किसमस, इद, सबै हाम्रो संस्कृति हुन् । सभ्यताको यस यात्रामा
 म वारम्वार सोध्छु र सोच्छु यस्ता सुन्दर अवसरलाई हामीले सदुपयोग गर्ने पर्छ ।
 संस्कृतिका नाममा लिङ्ग, वर्ण, जातिका आधारमा हुने भेद विकृति न् । ती कुरा हट्नुपर्छ र
 संविधानले यसको सुनिश्चितता पिन गरेको छ ।
 - क) संस्कृति भनेको के हो ?
 - ख) संविधानको सुनिश्चित गरेका सांस्कृतिक विषयहरु के के हुन्? **१३. दिइएको प्रश्नहरुमध्ये कुनै एक प्रश्नको विवेचनात्मक (लामो) उत्तर दिनुहोस्। ५**क) सत्यनिष्ठा र समतामूलक समाजको स्थापनामा योगमायाले दिएको योगदानको चर्चा गर्नुहोस्।

"गाउँको माया" कथामा समाजको के कस्ता समस्यालाई कसरी प्रस्तुत गरिएको छ ? विवेचनात्मक उत्तर दिनुहोस्।

१४. दिइएका मध्ये एक शीर्षकमा २५० शब्दसम्ममा निबन्ध लेख्नुहोस्।

क) इन्टरनेटको शिक्षामा प्रभाव

ख) नेपालमा पर्यटनको सम्भावना

ग) प्राविधिक शिक्षा आजको आवश्यकता

समाप्त

Sukuna Secondary School

Second Terminal Examination - 2079

Compulsory English (Eng. 003)

Grade - XI

F.M -50

Time: 2 hrs

P.M -20

1. Read the text below and complete the tasks that follow.

Daniel Defoe was born in London on 1660. He was not very educated and spent many years of young life studying religion and later travelling as a merchant. He travelled widely and built up a successful business. During his period, he married and started raising a family. However, around 1692, his business failed and he fell into debt.

Since he had always been interested in politics, he tried to earn money by writing political articles for newspapers. But his political writings brought only troubles increasing debt and so Defoe turned to the fiction writing. His first novel was written in 1719. When Defoe was nearly sixty years old, his fiction writing became one of the best known adventure stories in the world. That novel was Robinson Crusoe-a story which thrills readers even today, more than two hundred and fifty years later.

Robinson Crusoe brought Defoe great success and helped him to pay back part of his debts. He continued writing novel such as Moll Flanders, Colonel Jack and two other Robinson Crusoe's story but none became as well known as the first one.

A. State whether the following statements a	
	$(5\times 1=5)$
a. Daniel was English by birth	
b. Defoe became the political leader	
c. Robinson Crusoe was his first novel wri	itten in 1719
d. Defoe's all novels were popular.	
e. He failed in business and plunged into	debt
B. Answer the following questions.	$(5 \times 1 = 5)$
a. Where was Daniel Defoe born?	
b. How did Daniel spend his early life?	
c. Why did Defoe give up writing political	articles?
d. What made him pay back part of his de	bts?
e. Name any two novels written by Danie	Defoe.
2. Write short answers to the following que	stions: (any four)
	(4X2=8)
a. Describe the portrait that the narrator sa	
h Mhat kind af lava is assessed in 18 a a	he Oval Portrait)
b. What kind of love is expressed in 'A Red, c. What is poverty according to Darker 2006.	red rose?
c. What is poverty according to Parker?(Wh d. Why do neither Dona Laura nor Don Gon	lat is poverty?)
identities? (A Sunny Morning)	izaio reveal their true
e. Why did Jonathan think of himself as an e	extraordinary
lucky? (Civil Peace)	
. Answer these questions below:	
a. Write the summary of the poem 'All the	(5X2=10) World's a Stage'
b. Not everyone is capable of fulfilling the	roles of olders'
Explain the statement with reference to	the essay.
	haring Tradition)

4. Stating suitable qualification and experience, write a letter of application for the post of a primary level English teacher.5 5. Write an essay on 'My Dream House" in about 300 words. 7 6. Do as indicated in the bracket and rewrite the sentences. a. The girl is always happy. (Underline the adverb in the sentence) b. One of the students in this school (don't/ doesn't) have quality. (Choose one from the bracket to complete the sentence) c. Prem drove Milan the airport. (Put the correct preposition in the blank) d. Hurry up! We (wait) for you. (Put the verb from the bracket in correct tense to make a meaningful sentence) e. Your mother always remembers you...... you don't do so. (Put the correct conjunction in the blank to complete the sentence) (5.12=5)7. Do as indicated. a. Arrange the following words as per order in the dictionary. peach, pear, penguin, peasant, peacock. b. What does the phrase "give up" mean? ii. to escape iii. to quit iv. to exchange c. The man who is wearing a red glass is my friend. (What word class does the underlined word in the sentence belong to?) d. If I (am/is/were) a bird, I would fly in the sky. (Fill in the blanks selecting the word from the bracket) e. She plays (a/an/the) flute well. (Fill in the blanks choosing the correct article from the bracket)

The End

1

Sukuna Secondary School

Second Terminal Examination-2079

Grade: XI F.M: 50 Time: 2 hour Subject: Computer Science Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks. Group 'A' (Multiple Choice Questions) Attempt all questions Tick the best alternatives. A light sensitive device that converts images or printed documents into digital form is...... i. Plotter ii. OMR iii. Scanner iv. Light pen The program stored in ROM is called...... i. flatware ii.freeware iv.firmware iii.formware Which of the following memory is volatile... II. RAM ROM iv. EPROM iii. PROM Is an open source operating system. d. ii. Google Docs i. Linux iii. Google Sheets iv. VLC media player e. Which of the following is/are the universal logic gates? i. OR and NOR ii. AND iii. NAND and NORis an utility software. ii.MS-Word i.WinZip ii.Adobe Photoshop iv.MS-Powerpoint g. Which is not programming language? i.C language ii.C++ language iii.Basic iv.HTML h. Which tag is used to create ordered list? i.
 ii.
 iii. iv. None of the above i. An analog computer can process..... i. temperature ii. Pressure iv. All of the above iii. speed

Group 'B'

Give short answer to the following questions.

[5×5=25]

What is AI? Write the five features that will have in fifth generation of computers.

[5]

Convert (BAD)₁₆ to its octal equivalent.

State and prove De Morgan's Theorem.

5

- 4. How do we use , and tag in ? Give suitable example.
- what is application software? Explain its types

Write short notes on: (any two) 6.

[2×2.5=5]

- a. Analog Computer.
- b. Mobile operating system.
- c. HTML Tags.

Group 'C'

Give long answer to the following questions.

 $[2\times8=16]$

Define an Operating system. List its functions. Differentiate Between CUI and GUI based operating system.

OR

Explain AND, OR, NOT, NOR gate with its truth table, logic symbol and Venn diagram.

8. Discuss the term computer Architecture . Draw block diagram and explain with the main component of a computer system.

-Best of Luck-